Introduction to
Artificial Intelligence

Jan - May 2023 IIT Guwahati
DA 221

Instructors: Neeraj Sharma (& Arghyadip Roy)

Lecture 07: Neeraj Sharma

Uninformed Search Strategies ... bringing more
context

The agent’s goal in Romania is the singleton set {In(Bucharest)}

] Oradea
71
[|
75 151
Arad
Sibiu 99 Fagaras
118
80
Timi Rimnicu Vilcea
imisoara e
111] Lugoj Pitesti
[|
70
] Mehadia
75 138
Drobeta [] 120
|
Craiova

211

] Giurgiu

Neamt
]
87
d Iasi
92
Ld Vaslui
142
98
85 = L] Hirsova
Urziceni
86
Bucharest
90 .
Eforie

Creating a Search Tree

a) The initial state

118

] Timisoara

Pitesti

[1 Mehadia

75
Drobeta []

Bucharest

Craiova] Giurgiu Eforie

CArad 3

g L] Vaslui

] Timisoara
Pitesti

L] Hirsova

[1 Mehadia Urziceni

75
Drobeta []

Bucharest

Craiova] Giurgiu Eforie

Creating a Search Tree

a) The initial state

b) After expanding Arad

CArad 3

Creating a Search Tree

a) The initial state

118

L] Vaslui
] Timisoara

Pitesti

b) After expanding Arad

L] Hirsova

Urziceni

Bucharest
Drobeta []

Craiova] Giurgiu Eforie

¢) After expanding Sibiu

Fagaras

99
118

Rimnicu Vilcea

] Timisoara

Craiova [] Giurgiu

What is happening?
e Generation of nodes
e Expansion of nodes

L] Hirsova

Eforie

Creating a Search Tree

a) The initial state

b) After expanding Arad

¢) After expanding Sibiu

function TREE-SEARCH(problem) returns a solution, or failure

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

“Algorithms that forget their history are doomed to repeat it”: create an
explored set to help keep track of node visits.

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

/

Frontier: separates unexplored from explored

(a)

O O
O—e—O O—e—O
O——0O Oo—o—@ O
O O—QI
O

(b)

Programming: What should a
node contain?

PARENT

s (|| 4 Node ACTION = Right

PATH-COST =6

STATE

Given the components for a parent node,

CHILD-NODE takes {parent node, action} and returns the resulting child node:

function CHILD-NODE(problem, parent, action) returns a node
return a node with
STATE = problem.RESULT(parent.STATE, action),
PARENT = parent, ACTION = action,
PATH-COST = parent.PATH-COST + problem.STEP-COST(parent.STATE, action)

Frontier:

Store such that the search algorithm can easily choose the next node to
expand according to its preferred strategy.

The appropriate data structure for this is a queue. The operations on a
queue are as follows:

e EMPTY?(queue): returns TRUE only if there are no more elements in

the queue.
* POP(queue): removes the first element of the queue and returns it.

* INSERT(element, queue): inserts an element and returns the
resulting queue.

Frontier:

Store such that the search algorithm can easily choose the next
node to expand according to its preferred strategy.

Queue types based on how elements can be popped out

e FIFO Queue
e LIFO Queue
e Priority Queue

Expansion set:

Needs to be regularly queried for checking if a state has been
explored.

e Efficient storage, lookup and expansion
e Hash tables can be used
e Canonical form:

o Bit vector representation

o sorted /ordered list

Breadth First search

>®

©® 6 PO ® B G

Breadth First search

>®

® ©® > & ® G

Frontier operates as a FIFO queue

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node <+ a node with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier < a FIFO queue with node as the only element

explored < an empty set

loop do
if EMPTY?(frontier) then return failure
node < POP(frontier) /* chooses the shallowest node in frontier */
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child < CHILD-NODE(problem, node, action)
if child.STATE is not in explored or frontier then
if problem .GOAL-TEST(child.STATE) then return SOLUTION(child)

frontier < INSERT(child, frontier)

Uniform cost search

Sibiu Fagaras

Rimnicu Vilcea

Pitesti
Introduces the
notion of cost.

Frontier operates as a priority queue Bucharest

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node < a node with STATE = problem.INITIAL-STATE, PATH-COST =0
frontier < a priority queue ordered by PATH-COST, with node as the only element
explored « an empty set
loop do
if EMPTY?(frontier) then return failure
node < POP(frontier) /[* chooses the lowest-cost node in frontier */
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child < CHILD-NODE(problem, node, action)
if child.STATE is not in explored or frontier then
frontier < INSERT(child, frontier)
else if child .STATE is in frontier with higher PATH-COST then
replace that frontier node with child

mﬁx@ s

SRR
Eich

Depth First Search

Depth First Search

Frontier operates as a LIFO‘%@

queue

WO

IR

Depth Limited Search

function DEPTH-LIMITED-SEARCH(problem, limnit) returns a solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(problem . INITIAL-STATE), problem, limit)

function RECURSIVE-DLS(node, problem, lirnit) returns a solution, or failure/cutoff
if problem . .GOAL-TEST(node.STATE) then return SOLUTION(node)
else if limit = 0 then return cutoff
else
cutoff—occurred? « false
for each action in problem.ACTIONS(node.STATE) do
child «— CHILD-NODE(problem, node, action)
result +— RECURSIVE-DLS(child, problem, limit — 1)
if result = cutoff then cutoff_occurred? « true
else if result # failure then return result
if cutoff_occurred? then return cutoff else return failure

lterative Deepening Depth-First Search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure
for depth =0 to oc do
result < DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

St S SN SR

Limit =2 *®

Sreve
AR R ST

G0 B B B

al Searc

Bi-direction

Comparison of Search Strategies

Citesion Breadth- Uniform- Depth- Iterative Bidirectional
First Cost Limited Deepening (if applicable)
Complete? Yes?® Yes®? No Yes® Yes®4
Time O(b?) O(pr+1e" /]y o(b*) O(b%) O(b/?)
Space O(b?) O(F+LE/ED O(be) O(bd) O(b?/?)
Optimal? Yes® Yes No Yes® Yesc?

e Completeness: Is the algorithm guaranteed to find a solution when there is one?
e Optimality: Does the strategy find the optimal solution,
e Time complexity: How long does it take to find a solution?

e Space complexity: How much memory is needed to perform the search?

b:branching factor or maximum number of successors for any node

d: the depth of the shallowest goal

m: maximum length of any path in the state space

